Missing Data - Better "Not to Have Them", but What If You Do? (Part 1)

Dirk Temme, Sarah Jensen
{"title":"Missing Data - Better \"Not to Have Them\", but What If You Do? (Part 1)","authors":"Dirk Temme, Sarah Jensen","doi":"10.15358/0344-1369-2019-4-21","DOIUrl":null,"url":null,"abstract":"Missing values are ubiquitous in empirical marketing research. If missing data are not dealt with properly, this can lead to a loss of statistical power and distorted parameter estimates. While traditional approaches for handling missing data (e.g., listwise deletion) are still widely used, researchers can nowadays choose among various advanced techniques such as multiple imputation analysis or full-information maximum likelihood estimation. Due to the available software, using these modern missing data methods does not pose a major obstacle. Still, their application requires a sound understanding of the prerequisites and limitations of these methods as well as a deeper understanding of the processes that have led to missing values in an empirical study. This article is Part 1 and first introduces Rubin’s classical definition of missing data mechanisms and an alternative, variable-based taxonomy, which provides a graphical representation. Secondly, a selection of visualization tools available in different R packages for the description and exploration of missing data structures is presented.","PeriodicalId":446283,"journal":{"name":"Marketing ZFP","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing ZFP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15358/0344-1369-2019-4-21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing values are ubiquitous in empirical marketing research. If missing data are not dealt with properly, this can lead to a loss of statistical power and distorted parameter estimates. While traditional approaches for handling missing data (e.g., listwise deletion) are still widely used, researchers can nowadays choose among various advanced techniques such as multiple imputation analysis or full-information maximum likelihood estimation. Due to the available software, using these modern missing data methods does not pose a major obstacle. Still, their application requires a sound understanding of the prerequisites and limitations of these methods as well as a deeper understanding of the processes that have led to missing values in an empirical study. This article is Part 1 and first introduces Rubin’s classical definition of missing data mechanisms and an alternative, variable-based taxonomy, which provides a graphical representation. Secondly, a selection of visualization tools available in different R packages for the description and exploration of missing data structures is presented.
丢失的数据——最好“不拥有它们”,但如果你拥有了呢?(第1部分)
价值缺失在实证营销研究中普遍存在。如果丢失的数据没有得到适当的处理,这可能会导致统计能力的损失和参数估计的扭曲。虽然处理缺失数据的传统方法(如列表删除)仍然被广泛使用,但研究人员现在可以选择各种先进的技术,如多重输入分析或全信息最大似然估计。由于有可用的软件,使用这些现代丢失数据的方法并不构成一个主要障碍。尽管如此,它们的应用需要对这些方法的先决条件和局限性有充分的理解,以及对导致实证研究中缺失值的过程有更深入的理解。本文是第1部分,首先介绍Rubin对缺失数据机制的经典定义,以及另一种基于变量的分类法,该分类法提供了图形表示。其次,介绍了不同R包中可用于描述和探索缺失数据结构的可视化工具的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信