Learning at the crossroads of biology and computation

J. Paredis
{"title":"Learning at the crossroads of biology and computation","authors":"J. Paredis","doi":"10.1109/INBS.1995.404279","DOIUrl":null,"url":null,"abstract":"Discusses various avenues for exploiting biological learning mechanisms within machine learning. Special attention is given to the following issues: (a) the reasons for the wide variety of biological learning mechanisms; (b) the relation between lifetime and genetic learning; (c) a description of the driving forces of genetic learning and their use in evolutionary computation. Various symbolic machine learning and reasoning techniques can be used to complement (genetic and/or neural) sub-symbolic learning. A first approach uses symbolic induction for explaining the behavior of (genetically evolved) neural nets. Next, a general framework for the use of (symbolic) domain knowledge during genetic learning is introduced.<<ETX>>","PeriodicalId":423954,"journal":{"name":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INBS.1995.404279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Discusses various avenues for exploiting biological learning mechanisms within machine learning. Special attention is given to the following issues: (a) the reasons for the wide variety of biological learning mechanisms; (b) the relation between lifetime and genetic learning; (c) a description of the driving forces of genetic learning and their use in evolutionary computation. Various symbolic machine learning and reasoning techniques can be used to complement (genetic and/or neural) sub-symbolic learning. A first approach uses symbolic induction for explaining the behavior of (genetically evolved) neural nets. Next, a general framework for the use of (symbolic) domain knowledge during genetic learning is introduced.<>
在生物学和计算的交叉路口学习
讨论了在机器学习中利用生物学习机制的各种途径。特别注意以下问题:(a)生物学习机制种类繁多的原因;(b)终生与遗传学习之间的关系;(c)描述遗传学习的驱动力及其在进化计算中的应用。各种符号机器学习和推理技术可以用来补充(遗传和/或神经)子符号学习。第一种方法使用符号归纳法来解释(遗传进化的)神经网络的行为。接下来,介绍了在遗传学习过程中使用(符号)领域知识的一般框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信