{"title":"A Numerical Model Comprising the Effect of Number of Turns on AC Losses in 2G HTS Coated Conductor at 77K using H-formulations","authors":"Abhinav Kumar, A. Agrawal, J. M. L. Jeyan","doi":"10.1109/ICPEA.2019.8818528","DOIUrl":null,"url":null,"abstract":"Coated conductors are widely employed in various power applications including superconducting motors, fault current limiters, energy storage, transmission and distribution systems etc. Ideal 2G (YBCO) superconductors are having almost zero resistance when cooled below 90K and can carry currents without loss. Coated conductors are made from Yttrium-Barium ceramic powder where stabilizer and substrate are being coupled together to strengthen the tape architecture. Practically, AC losses are found to occur when current is flowing through the tape and the losses are high when large currents flowing through the coated conductors. In this work, a 2D numerical model has been developed where the effect of number of turns on the AC losses for magnet coils/stacks has been examined using SCS 12050 tape having 12mm width and critical temperature as 240 A. The numerical model is based on H-formulations integrated with E-J Power law where homogenized approach has been proposed to estimate the magnetic flux density and AC losses. The model is being tested for a sinusoidal input having 50 Hz frequency for the full cycle.","PeriodicalId":427328,"journal":{"name":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 2nd International Conference on Power and Energy Applications (ICPEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEA.2019.8818528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Coated conductors are widely employed in various power applications including superconducting motors, fault current limiters, energy storage, transmission and distribution systems etc. Ideal 2G (YBCO) superconductors are having almost zero resistance when cooled below 90K and can carry currents without loss. Coated conductors are made from Yttrium-Barium ceramic powder where stabilizer and substrate are being coupled together to strengthen the tape architecture. Practically, AC losses are found to occur when current is flowing through the tape and the losses are high when large currents flowing through the coated conductors. In this work, a 2D numerical model has been developed where the effect of number of turns on the AC losses for magnet coils/stacks has been examined using SCS 12050 tape having 12mm width and critical temperature as 240 A. The numerical model is based on H-formulations integrated with E-J Power law where homogenized approach has been proposed to estimate the magnetic flux density and AC losses. The model is being tested for a sinusoidal input having 50 Hz frequency for the full cycle.