Loop Closure Detection for Monocular Visual Odometry: Deep-Learning Approaches Comparison

Mohamed Ali Sedrine, Wided Souidène Mseddi, T. Abdellatif, Rabah Attia
{"title":"Loop Closure Detection for Monocular Visual Odometry: Deep-Learning Approaches Comparison","authors":"Mohamed Ali Sedrine, Wided Souidène Mseddi, T. Abdellatif, Rabah Attia","doi":"10.1109/SITIS.2019.00083","DOIUrl":null,"url":null,"abstract":"In order to decrease monocular visual odometry drift by detecting loop closure, this paper presents a comparison between state of the art, 2-channel and Siamese, Convolutional Neural Networks. The work consists of training these networks in order to make them able to robustly identify loop closures. As we are in the case of having two input images, we perform our trainings and tests on both 2-channel and Siamese architecture for each network.","PeriodicalId":301876,"journal":{"name":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2019.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to decrease monocular visual odometry drift by detecting loop closure, this paper presents a comparison between state of the art, 2-channel and Siamese, Convolutional Neural Networks. The work consists of training these networks in order to make them able to robustly identify loop closures. As we are in the case of having two input images, we perform our trainings and tests on both 2-channel and Siamese architecture for each network.
单目视觉里程计的闭环检测:深度学习方法比较
为了通过检测环路闭合来减少单目视觉里程计漂移,本文对目前最先进的2通道卷积神经网络和Siamese卷积神经网络进行了比较。这项工作包括训练这些网络,使它们能够鲁棒地识别闭环。由于我们在有两个输入图像的情况下,我们对每个网络在2通道和Siamese架构上执行训练和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信