Action Recognition by Matching Clustered Trajectories of Motion Vectors

Michalis Vrigkas, Vasileios Karavasilis, Christophoros Nikou, I. Kakadiaris
{"title":"Action Recognition by Matching Clustered Trajectories of Motion Vectors","authors":"Michalis Vrigkas, Vasileios Karavasilis, Christophoros Nikou, I. Kakadiaris","doi":"10.5220/0004277901120117","DOIUrl":null,"url":null,"abstract":"A framework for action representation and recognition base d on the description of an action by time series of optical flow motion features is presented. In the learning step, the motion curves representing each action are clustered using Gaussian mixture modeling (GMM). In the recognition step, the optical flow curves of a probe sequence are also clustered using a GMM and the probe c urves are matched to the learned curves using a non-metric similarity function based on the longest common subsequence which is robust to noise and provides an intuitive notion of similarity between traject ories. Finally, the probe sequence is categorized to the learned action with the maximum similarity using a neare st n ighbor classification scheme. Experimental results on common action databases demonstrate the effecti veness of the proposed method.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004277901120117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A framework for action representation and recognition base d on the description of an action by time series of optical flow motion features is presented. In the learning step, the motion curves representing each action are clustered using Gaussian mixture modeling (GMM). In the recognition step, the optical flow curves of a probe sequence are also clustered using a GMM and the probe c urves are matched to the learned curves using a non-metric similarity function based on the longest common subsequence which is robust to noise and provides an intuitive notion of similarity between traject ories. Finally, the probe sequence is categorized to the learned action with the maximum similarity using a neare st n ighbor classification scheme. Experimental results on common action databases demonstrate the effecti veness of the proposed method.
基于运动向量聚类轨迹匹配的动作识别
提出了一种基于光流运动特征时间序列描述动作的动作表示与识别框架。在学习步骤中,使用高斯混合建模(GMM)对代表每个动作的运动曲线进行聚类。在识别步骤中,探头序列的光流曲线也使用GMM聚类,并使用基于最长公共子序列的非度量相似函数将探头c曲线与学习曲线进行匹配,该函数对噪声具有鲁棒性,并提供了直观的轨迹之间的相似性概念。最后,使用最近邻分类方案将探测序列分类为具有最大相似度的学习动作。在常用动作数据库上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信