Improved Meanshift Tracking Algorithm Based on Optical flow

Xiaoyan Yang, Qiu Li, Caijuan He
{"title":"Improved Meanshift Tracking Algorithm Based on Optical flow","authors":"Xiaoyan Yang, Qiu Li, Caijuan He","doi":"10.1109/ECEI57668.2023.10105361","DOIUrl":null,"url":null,"abstract":"The mean shift tracker has difficulty in tracking fast moving targets and suffers from local optimal problem. To overcome the limitation of the mean-shift tracking algorithm, a new approach is proposed by integrating the mean-shift algorithm and optical flow methods. Even with n the rough position, the mean-shift algorithm achieves precise tracking of the target. Several tracking experiments show that the proposed algorithm can effectively track fast moving target and overcome the tracking error cumulating problems.","PeriodicalId":176611,"journal":{"name":"2023 IEEE 6th Eurasian Conference on Educational Innovation (ECEI)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 6th Eurasian Conference on Educational Innovation (ECEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECEI57668.2023.10105361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mean shift tracker has difficulty in tracking fast moving targets and suffers from local optimal problem. To overcome the limitation of the mean-shift tracking algorithm, a new approach is proposed by integrating the mean-shift algorithm and optical flow methods. Even with n the rough position, the mean-shift algorithm achieves precise tracking of the target. Several tracking experiments show that the proposed algorithm can effectively track fast moving target and overcome the tracking error cumulating problems.
基于光流的改进Meanshift跟踪算法
平均位移跟踪器难以跟踪快速运动目标,且存在局部最优问题。为了克服mean-shift跟踪算法的局限性,提出了一种将mean-shift算法与光流方法相结合的方法。即使在粗糙位置下,mean-shift算法也能实现对目标的精确跟踪。多个跟踪实验表明,该算法能有效地跟踪快速运动目标,克服了跟踪误差累积的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信