Deep Learning based DDoS Attack Detection in Emerging Networks

M. Saravanan, S. Sushmitha
{"title":"Deep Learning based DDoS Attack Detection in Emerging Networks","authors":"M. Saravanan, S. Sushmitha","doi":"10.1109/ICPS55917.2022.00044","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) is a compelling method for distinguishing botnet assaults. Nonetheless, how much organization traffic information and the necessary memory space are normally enormous. Hence, it is inordinately difficult to utilize the DL technique on memory-limited IoT gadgets. In this paper, we lessen the size of the IoT network traffic information highlight utilizing the Long Short-Term Memory Autoencoder (LAE) codec segment. To order network traffic tests accurately, we examine long haul factors connected with low-layered include created by LAE utilizing Bi-directional Long Short-Term Memory (BLSTM). The outcomes show that LAE altogether diminished the memory space expected for information capacity of huge organization traffic by 91.89%, and surpassed the standard highlights of decreasing element. Regardless of the huge decrease in highlight size, the deep Bi-directional Long Short-Term Memory model shows strength against low model value and over balance. It additionally secures a decent capacity to adjust to the states of parallel arrangement.","PeriodicalId":263404,"journal":{"name":"2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPS55917.2022.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep Learning (DL) is a compelling method for distinguishing botnet assaults. Nonetheless, how much organization traffic information and the necessary memory space are normally enormous. Hence, it is inordinately difficult to utilize the DL technique on memory-limited IoT gadgets. In this paper, we lessen the size of the IoT network traffic information highlight utilizing the Long Short-Term Memory Autoencoder (LAE) codec segment. To order network traffic tests accurately, we examine long haul factors connected with low-layered include created by LAE utilizing Bi-directional Long Short-Term Memory (BLSTM). The outcomes show that LAE altogether diminished the memory space expected for information capacity of huge organization traffic by 91.89%, and surpassed the standard highlights of decreasing element. Regardless of the huge decrease in highlight size, the deep Bi-directional Long Short-Term Memory model shows strength against low model value and over balance. It additionally secures a decent capacity to adjust to the states of parallel arrangement.
新兴网络中基于深度学习的DDoS攻击检测
深度学习(DL)是识别僵尸网络攻击的有效方法。尽管如此,有多少组织流量信息和必要的内存空间通常是巨大的。因此,在内存有限的物联网设备上使用DL技术是非常困难的。在本文中,我们利用长短期记忆自动编码器(LAE)编解码器段减少了物联网网络流量信息亮点的大小。为了准确地安排网络流量测试,我们利用双向长短期记忆(BLSTM)来研究与LAE创建的低层包括相关的长途因素。结果表明,LAE总体上使大型组织流量的信息容量所期望的内存空间减少了91.89%,超过了减少元素的标准亮点。尽管高光尺寸大幅下降,但深度双向长短期记忆模型在低模型值和过度平衡的情况下显示出优势。它还确保了适应并行安排状态的良好能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信