Mean field annealing EM for image segmentation

Wanhyun Cho, Soohyung Kim, Soonyoung Park, Jonghyun Park
{"title":"Mean field annealing EM for image segmentation","authors":"Wanhyun Cho, Soohyung Kim, Soonyoung Park, Jonghyun Park","doi":"10.1109/ICIP.2000.899511","DOIUrl":null,"url":null,"abstract":"We present a statistical model-based approach to the color image segmentation. A novel deterministic annealing expectation-maximization (EM) and mean field theory are used to estimate the posterior probability of each pixel and the parameters of the Gaussian mixture model which represents the multi-colored objects statistically. Image segmentation is carried out by clustering each pixel into the most probable component Gaussian. The experimental results show that the mean field annealing EM provides a global optimal solution for the maximum likelihood parameter estimation and the real images are segmented efficiently using the estimates computed by the maximum entropy principle and mean field theory.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a statistical model-based approach to the color image segmentation. A novel deterministic annealing expectation-maximization (EM) and mean field theory are used to estimate the posterior probability of each pixel and the parameters of the Gaussian mixture model which represents the multi-colored objects statistically. Image segmentation is carried out by clustering each pixel into the most probable component Gaussian. The experimental results show that the mean field annealing EM provides a global optimal solution for the maximum likelihood parameter estimation and the real images are segmented efficiently using the estimates computed by the maximum entropy principle and mean field theory.
图像分割的平均场退火EM
提出了一种基于统计模型的彩色图像分割方法。采用一种新的确定性退火期望最大化(EM)和平均场理论来估计每个像素的后验概率和统计表示多色物体的高斯混合模型的参数。图像分割是通过将每个像素聚类到最可能的高斯分量中进行的。实验结果表明,平均场退火算法为最大似然参数估计提供了全局最优解,并利用最大熵原理和平均场理论计算的估计有效地分割了真实图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信