A systematic model parameter extraction using differential evolution searching

Jeesoo Chang, M. Oh, Byung-Gook Park
{"title":"A systematic model parameter extraction using differential evolution searching","authors":"Jeesoo Chang, M. Oh, Byung-Gook Park","doi":"10.23919/SNW.2019.8782926","DOIUrl":null,"url":null,"abstract":"An evolutionary searching method for compact model parameter extraction is proposed. Optimum scale factor (SF) and crossover probability (CP) of the algorithm corresponded with the given task are investigated. The proposed method exhibits stable convergence behavior and superior accuracy compare to conventional methods.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An evolutionary searching method for compact model parameter extraction is proposed. Optimum scale factor (SF) and crossover probability (CP) of the algorithm corresponded with the given task are investigated. The proposed method exhibits stable convergence behavior and superior accuracy compare to conventional methods.
基于差分进化搜索的系统模型参数提取
提出了一种紧凑模型参数提取的进化搜索方法。研究了与给定任务相对应的算法的最优尺度因子(SF)和交叉概率(CP)。与传统方法相比,该方法具有稳定的收敛性和较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信