{"title":"A scaling algorithm for weighted matching on general graphs","authors":"H. Gabow","doi":"10.1109/SFCS.1985.3","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111
Abstract
This paper presents an algorithm for maximum matching on general graphs with integral edge weights, running in time O(n3/4m lg N), where n, m and N are the number of vertices, number of edges, and largest edge weight magnitude, respectively. The best previous bound is O(n(mlg lg lgd n + n lg n)) where d is the density of the graph. The algorithm finds augmenting paths in batches by scaling the weights. The algorithm extends to degree-constrained subgraphs and hence to shortest paths on undirected graphs, the Chinese postman problem and finding a maximum cut of a planar graph. It speeds up Christofides' travelling salesman approximation algorithm from O(n3) to O(n2.75 lg n). A list splitting problem that arises in Edmonds' matching algorithm is solved in O(mα(m,n)) time, where m is the number of operations on a universe of n elements; the list splitting algorithm does not use set merging. Applications are given to update problems for red-green matching, the cardinality Chinese postman problem and the maximum cardinality plane cut problem; also to the all-pairs shortest paths problem on undirected graphs with lengths plus or minus one.