Gain margins for multivariable control systems

J. R. Bar-on, E. Jonckheere
{"title":"Gain margins for multivariable control systems","authors":"J. R. Bar-on, E. Jonckheere","doi":"10.1109/CDC.1990.203609","DOIUrl":null,"url":null,"abstract":"The phase margin for a multivariable system is defined by examining the unitary portion of the polar decomposition of a perturbation, Delta , in the feedback path. A dual result defining the gain margin for a multivariable system is derived by examining the positive definite hermitian (PDH) portion of the polar decompositions for nonsingular perturbations. This study focuses on the multivariable gain margin. The main result is an extension of the classical SISO (single input single output) concept for all PDH matrices in the feedback path whose gain is less than the gain margin of the system. Calculation of the gain margin requires solving a constrained optimization problem which is almost a complete dual of the constrained optimization problem solved when calculating the phase margin.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The phase margin for a multivariable system is defined by examining the unitary portion of the polar decomposition of a perturbation, Delta , in the feedback path. A dual result defining the gain margin for a multivariable system is derived by examining the positive definite hermitian (PDH) portion of the polar decompositions for nonsingular perturbations. This study focuses on the multivariable gain margin. The main result is an extension of the classical SISO (single input single output) concept for all PDH matrices in the feedback path whose gain is less than the gain margin of the system. Calculation of the gain margin requires solving a constrained optimization problem which is almost a complete dual of the constrained optimization problem solved when calculating the phase margin.<>
多变量控制系统的增益边际
多变量系统的相位裕度是通过检查反馈路径中扰动Delta的极性分解的酉部分来定义的。通过研究非奇异扰动的极分解的正定厄米特部分,导出了定义多变量系统增益裕度的对偶结果。本研究的重点是多变量增益裕度。主要结果是扩展了经典的单输入单输出(SISO)概念,适用于增益小于系统增益边际的反馈路径中的所有PDH矩阵。增益裕度的计算需要解决一个约束优化问题,这个问题几乎是计算相位裕度时所解决的约束优化问题的完全对偶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信