The Distributed Complexity of Locally Checkable Problems on Paths is Decidable

A. Balliu, S. Brandt, Yi-Jun Chang, D. Olivetti, M. Rabie, J. Suomela
{"title":"The Distributed Complexity of Locally Checkable Problems on Paths is Decidable","authors":"A. Balliu, S. Brandt, Yi-Jun Chang, D. Olivetti, M. Rabie, J. Suomela","doi":"10.1145/3293611.3331606","DOIUrl":null,"url":null,"abstract":"Consider a computer network that consists of a path with n nodes. The nodes are labeled with inputs from a constant-sized set, and the task is to find output labels from a constant-sized set subject to some local constraints---more formally, we have an LCL (locally checkable labeling) problem. How many communication rounds are needed (in the standard LOCAL model of computing) to solve this problem? It is well known that the answer is always either O(1) rounds, or Θ(log⋅ n) rounds, or Θ(n) rounds. In this work we show that this question is decidable (albeit PSPACE-hard): we present an algorithm that, given any LCL problem defined on a path, outputs the distributed computational complexity of this problem and the corresponding asymptotically optimal algorithm.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Consider a computer network that consists of a path with n nodes. The nodes are labeled with inputs from a constant-sized set, and the task is to find output labels from a constant-sized set subject to some local constraints---more formally, we have an LCL (locally checkable labeling) problem. How many communication rounds are needed (in the standard LOCAL model of computing) to solve this problem? It is well known that the answer is always either O(1) rounds, or Θ(log⋅ n) rounds, or Θ(n) rounds. In this work we show that this question is decidable (albeit PSPACE-hard): we present an algorithm that, given any LCL problem defined on a path, outputs the distributed computational complexity of this problem and the corresponding asymptotically optimal algorithm.
路径上局部可检问题的分布复杂度是可判定的
考虑一个计算机网络,它由一条有n个节点的路径组成。节点被标记为来自固定大小集合的输入,任务是根据一些局部约束从固定大小集合中找到输出标签——更正式地说,我们有一个LCL(局部可检查标记)问题。需要多少通信轮(在标准的LOCAL计算模型中)来解决这个问题?众所周知,答案总是O(1)轮,或Θ(log·n)轮,或Θ(n)轮。在这项工作中,我们证明了这个问题是可决定的(尽管PSPACE-hard):我们提出了一个算法,给定任何在路径上定义的LCL问题,输出该问题的分布式计算复杂性和相应的渐近最优算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信