{"title":"A categorification of the square root of -1","authors":"Yin Tian","doi":"10.4064/FM232-1-7","DOIUrl":null,"url":null,"abstract":"We give a graphical calculus for a monoidal DG category $\\cal{I}$ whose Grothendieck group is isomorphic to the ring $\\mathbb{Z}[\\sqrt{-1}]$. We construct a categorical action of $\\cal{I}$ which lifts the action of $\\mathbb{Z}[\\sqrt{-1}]$ on $\\mathbb{Z}^2$.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/FM232-1-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We give a graphical calculus for a monoidal DG category $\cal{I}$ whose Grothendieck group is isomorphic to the ring $\mathbb{Z}[\sqrt{-1}]$. We construct a categorical action of $\cal{I}$ which lifts the action of $\mathbb{Z}[\sqrt{-1}]$ on $\mathbb{Z}^2$.