{"title":"Hyper-Fibonacci and Hyper-Lucas Polynomials","authors":"Efruz Özlem Mersin","doi":"10.47000/tjmcs.1123369","DOIUrl":null,"url":null,"abstract":"In this paper, hyper-Fibonacci and hyper-Lucas polynomials are defined and some of their algebraic and combinatorial properties such as the recurrence relations, summation formulas, and generating functions are presented. In addition, some relationships between the hyper-Fibonacci and hyper-Lucas polynomials are given.","PeriodicalId":177259,"journal":{"name":"Turkish Journal of Mathematics and Computer Science","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47000/tjmcs.1123369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, hyper-Fibonacci and hyper-Lucas polynomials are defined and some of their algebraic and combinatorial properties such as the recurrence relations, summation formulas, and generating functions are presented. In addition, some relationships between the hyper-Fibonacci and hyper-Lucas polynomials are given.