Neural Network Method for Solving Linear Fractional Programming

Li Xiao
{"title":"Neural Network Method for Solving Linear Fractional Programming","authors":"Li Xiao","doi":"10.1109/CIS.2010.15","DOIUrl":null,"url":null,"abstract":"This paper presents a neural network method for solving a class of linear fractional optimization problems with linear equality constraints. The proposed neural network model have the following two properties. First, it is demonstrated that the set of optima to the problems coincides with the set of equilibria of the neural network models which means the proposed model is complete. Second, it is also shown that the model globally converges to an exact optimal solution for any starting point from the feasible region.","PeriodicalId":420515,"journal":{"name":"2010 International Conference on Computational Intelligence and Security","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a neural network method for solving a class of linear fractional optimization problems with linear equality constraints. The proposed neural network model have the following two properties. First, it is demonstrated that the set of optima to the problems coincides with the set of equilibria of the neural network models which means the proposed model is complete. Second, it is also shown that the model globally converges to an exact optimal solution for any starting point from the feasible region.
求解线性分式规划的神经网络方法
本文提出了求解一类具有线性等式约束的线性分式优化问题的神经网络方法。所提出的神经网络模型具有以下两个性质。首先,证明了问题的最优解集与神经网络模型的平衡点集重合,表明所提模型是完备的。其次,还证明了该模型从可行区域全局收敛到任意起点的精确最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信