Molecular Dynamics Study on Mechanical Properties of Nanocrystalline tantalum

Xiao Wang, Kang Li, Yingmin Zhu, Weibing Li, Weidong Wang
{"title":"Molecular Dynamics Study on Mechanical Properties of Nanocrystalline tantalum","authors":"Xiao Wang, Kang Li, Yingmin Zhu, Weibing Li, Weidong Wang","doi":"10.1109/NANO46743.2019.8993923","DOIUrl":null,"url":null,"abstract":"The study of nanocrystalline(NC) polycrystals is a hot topic, and the study of nanomaterial properties by molecular dynamics has become the first choice for many researchers. The purpose of this paper is to simulate the tensile tests of single and polycrystalline tantalum by molecular dynamics(MD) to obtain its mechanical properties. Firstly, the Ravelo-EAM potential was used to conduct tensile tests on tantalum in the <100> direction. Secondly, it can be seen that the elastic modulus E100 decreases with the temperature gradually increases from 1 K to 1500 K according to the simulation results. Finally, the Hall-Petch(H-P) effect based on grain size is verified from the tensile test of polycrystalline tantalum.","PeriodicalId":365399,"journal":{"name":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO46743.2019.8993923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study of nanocrystalline(NC) polycrystals is a hot topic, and the study of nanomaterial properties by molecular dynamics has become the first choice for many researchers. The purpose of this paper is to simulate the tensile tests of single and polycrystalline tantalum by molecular dynamics(MD) to obtain its mechanical properties. Firstly, the Ravelo-EAM potential was used to conduct tensile tests on tantalum in the <100> direction. Secondly, it can be seen that the elastic modulus E100 decreases with the temperature gradually increases from 1 K to 1500 K according to the simulation results. Finally, the Hall-Petch(H-P) effect based on grain size is verified from the tensile test of polycrystalline tantalum.
纳米晶钽力学性能的分子动力学研究
纳米晶(NC)多晶的研究是一个热门话题,利用分子动力学研究纳米材料的性能已成为许多研究者的首选。本文的目的是用分子动力学(MD)模拟单晶和多晶钽的拉伸试验,以获得其力学性能。首先,使用Ravelo-EAM电位对钽进行方向拉伸试验。其次,根据模拟结果可以看出,弹性模量E100随着温度从1 K到1500 K逐渐升高而降低。最后,通过对多晶钽的拉伸试验,验证了基于晶粒尺寸的霍尔-佩奇(hp)效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信