Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks

Minsoo Rhu, Mike O'Connor, Niladrish Chatterjee, Jeff Pool, S. Keckler
{"title":"Compressing DMA Engine: Leveraging Activation Sparsity for Training Deep Neural Networks","authors":"Minsoo Rhu, Mike O'Connor, Niladrish Chatterjee, Jeff Pool, S. Keckler","doi":"10.1109/HPCA.2018.00017","DOIUrl":null,"url":null,"abstract":"Popular deep learning frameworks require users to fine-tune their memory usage so that the training data of a deep neural network (DNN) fits within the GPU physical memory. Prior work tries to address this restriction by virtualizing the memory usage of DNNs, enabling both CPU and GPU memory to be utilized for memory allocations. Despite its merits, virtualizing memory can incur significant performance overheads when the time needed to copy data back and forth from CPU memory is higher than the latency to perform DNN computations. We introduce a high-performance virtualization strategy based on a \"compressing DMA engine\" (cDMA) that drastically reduces the size of the data structures that are targeted for CPU-side allocations. The cDMA engine offers an average 2.6x (maximum 13.8x) compression ratio by exploiting the sparsity inherent in offloaded data, improving the performance of virtualized DNNs by an average 53% (maximum 79%) when evaluated on an NVIDIA Titan Xp.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"152","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 152

Abstract

Popular deep learning frameworks require users to fine-tune their memory usage so that the training data of a deep neural network (DNN) fits within the GPU physical memory. Prior work tries to address this restriction by virtualizing the memory usage of DNNs, enabling both CPU and GPU memory to be utilized for memory allocations. Despite its merits, virtualizing memory can incur significant performance overheads when the time needed to copy data back and forth from CPU memory is higher than the latency to perform DNN computations. We introduce a high-performance virtualization strategy based on a "compressing DMA engine" (cDMA) that drastically reduces the size of the data structures that are targeted for CPU-side allocations. The cDMA engine offers an average 2.6x (maximum 13.8x) compression ratio by exploiting the sparsity inherent in offloaded data, improving the performance of virtualized DNNs by an average 53% (maximum 79%) when evaluated on an NVIDIA Titan Xp.
压缩DMA引擎:利用激活稀疏性训练深度神经网络
流行的深度学习框架需要用户微调他们的内存使用,以便深度神经网络(DNN)的训练数据适合GPU的物理内存。先前的工作试图通过虚拟化dnn的内存使用来解决这一限制,使CPU和GPU内存都可以用于内存分配。尽管有其优点,但当从CPU内存来回复制数据所需的时间高于执行DNN计算的延迟时,虚拟化内存可能会导致显著的性能开销。我们引入了一种基于“压缩DMA引擎”(cDMA)的高性能虚拟化策略,该策略极大地减少了cpu端分配目标数据结构的大小。通过利用卸载数据固有的稀疏性,cDMA引擎提供了平均2.6倍(最高13.8倍)的压缩比,在NVIDIA Titan Xp上评估时,虚拟化dnn的性能平均提高了53%(最高79%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信