Improved fast gauss transform and efficient kernel density estimation

Changjiang Yang, R. Duraiswami, N. Gumerov, L. Davis
{"title":"Improved fast gauss transform and efficient kernel density estimation","authors":"Changjiang Yang, R. Duraiswami, N. Gumerov, L. Davis","doi":"10.1109/ICCV.2003.1238383","DOIUrl":null,"url":null,"abstract":"Evaluating sums of multivariate Gaussians is a common computational task in computer vision and pattern recognition, including in the general and powerful kernel density estimation technique. The quadratic computational complexity of the summation is a significant barrier to the scalability of this algorithm to practical applications. The fast Gauss transform (FGT) has successfully accelerated the kernel density estimation to linear running time for low-dimensional problems. Unfortunately, the cost of a direct extension of the FGT to higher-dimensional problems grows exponentially with dimension, making it impractical for dimensions above 3. We develop an improved fast Gauss transform to efficiently estimate sums of Gaussians in higher dimensions, where a new multivariate expansion scheme and an adaptive space subdivision technique dramatically improve the performance. The improved FGT has been applied to the mean shift algorithm achieving linear computational complexity. Experimental results demonstrate the efficiency and effectiveness of our algorithm.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"516","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 516

Abstract

Evaluating sums of multivariate Gaussians is a common computational task in computer vision and pattern recognition, including in the general and powerful kernel density estimation technique. The quadratic computational complexity of the summation is a significant barrier to the scalability of this algorithm to practical applications. The fast Gauss transform (FGT) has successfully accelerated the kernel density estimation to linear running time for low-dimensional problems. Unfortunately, the cost of a direct extension of the FGT to higher-dimensional problems grows exponentially with dimension, making it impractical for dimensions above 3. We develop an improved fast Gauss transform to efficiently estimate sums of Gaussians in higher dimensions, where a new multivariate expansion scheme and an adaptive space subdivision technique dramatically improve the performance. The improved FGT has been applied to the mean shift algorithm achieving linear computational complexity. Experimental results demonstrate the efficiency and effectiveness of our algorithm.
改进了快速高斯变换和高效核密度估计
在计算机视觉和模式识别中,多变量高斯和的求值是一项常见的计算任务,包括通用的、功能强大的核密度估计技术。求和的二次计算复杂度是制约该算法在实际应用中的可扩展性的一个重要障碍。快速高斯变换(FGT)成功地将低维问题的核密度估计缩短到线性运行时间。不幸的是,将FGT直接扩展到高维问题的代价随着维数的增加呈指数增长,使得它对于3维以上的问题变得不切实际。我们开发了一种改进的快速高斯变换来有效地估计高维高斯和,其中一个新的多元展开方案和自适应空间细分技术显着提高了性能。将改进后的FGT应用于均值移位算法,实现了线性计算复杂度。实验结果证明了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信