{"title":"For the Metatheory of Type Theory, Internal Sconing Is Enough","authors":"Rafael Bocquet, A. Kaposi, Christian Sattler","doi":"10.48550/arXiv.2302.05190","DOIUrl":null,"url":null,"abstract":"Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.05190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Metatheorems about type theories are often proven by interpreting the syntax into models constructed using categorical gluing. We propose to use only sconing (gluing along a global section functor) instead of general gluing. The sconing is performed internally to a presheaf category, and we recover the original glued model by externalization. Our method relies on constructions involving two notions of models: first-order models (with explicit contexts) and higher-order models (without explicit contexts). Sconing turns a displayed higher-order model into a displayed first-order model. Using these, we derive specialized induction principles for the syntax of type theory. The input of such an induction principle is a boilerplate-free description of its motives and methods, not mentioning contexts. The output is a section with computation rules specified in the same internal language. We illustrate our framework by proofs of canonicity, normalization and syntactic parametricity for type theory.