C. Maggi, F. Saglimbeni, V. Sosa, R. Di Leonardo, B. Nath, A. Puglisi
{"title":"Thermodynamic Limits of Sperm Swimming Precision","authors":"C. Maggi, F. Saglimbeni, V. Sosa, R. Di Leonardo, B. Nath, A. Puglisi","doi":"10.1103/prxlife.1.013003","DOIUrl":null,"url":null,"abstract":"Sperm swimming is crucial to fertilise the egg, in nature and in assisted reproductive technologies. Modelling the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here we demonstrate experimentally the relevance of energy dissipation for sperm beating fluctuations. For each motile cell, we reconstruct the time-evolution of the two main tail's spatial modes, which together trace a noisy limit cycle characterised by a maximum level of precision $p_{max}$. Our results indicate $p_{max} \\sim 10^2 s^{-1}$, remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is bounded by its energy dissipation rate according to the Thermodynamic Uncertainty Relation. Further experiments under oxygen deprivation show that $p_{max}$ decays with energy consumption, as it occurs for a single molecular motor. Both observations can be explained by conjecturing a high level of coordination among the conformational changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal flagellum actuated by a collection of motors, including a motor-motor nearest neighbour coupling of strength $K$: when $K$ is small the precision of a large flagellum is much higher than the single motor one. On the contrary, when $K$ is large the two become comparable.","PeriodicalId":420529,"journal":{"name":"PRX Life","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxlife.1.013003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sperm swimming is crucial to fertilise the egg, in nature and in assisted reproductive technologies. Modelling the sperm dynamics involves elasticity, hydrodynamics, internal active forces, and out-of-equilibrium noise. Here we demonstrate experimentally the relevance of energy dissipation for sperm beating fluctuations. For each motile cell, we reconstruct the time-evolution of the two main tail's spatial modes, which together trace a noisy limit cycle characterised by a maximum level of precision $p_{max}$. Our results indicate $p_{max} \sim 10^2 s^{-1}$, remarkably close to the estimated precision of a dynein molecular motor actuating the flagellum, which is bounded by its energy dissipation rate according to the Thermodynamic Uncertainty Relation. Further experiments under oxygen deprivation show that $p_{max}$ decays with energy consumption, as it occurs for a single molecular motor. Both observations can be explained by conjecturing a high level of coordination among the conformational changes of dynein motors. This conjecture is supported by a theoretical model for the beating of an ideal flagellum actuated by a collection of motors, including a motor-motor nearest neighbour coupling of strength $K$: when $K$ is small the precision of a large flagellum is much higher than the single motor one. On the contrary, when $K$ is large the two become comparable.