Deep Siamese Network for Multiple Object Tracking

Bonan Cuan, Khalid Idrissi, Christophe Garcia
{"title":"Deep Siamese Network for Multiple Object Tracking","authors":"Bonan Cuan, Khalid Idrissi, Christophe Garcia","doi":"10.1109/MMSP.2018.8547137","DOIUrl":null,"url":null,"abstract":"Multiple object tracking is an important but challenging computer vision task. Thanks to the significant progress in object detection field, tracking-by-detection becomes a trending paradigm for tracking multiple objects at the same time. Appearance models are also widely used for associating detection results. In this paper, we combine cosine similarity metric learning with very deep convolutional neural network, yielding a robust appearance pairwise matching model: a deep Siamese network capable of re-identifying the same object after a long time and dealing with partial and complete occlusion. Embedded in existing tracking algorithms, our model is a lightweight but powerful module for decision-making among track hypotheses. Experiments on MOT Challenge 2016 benchmark [1] demonstrate the effectiveness of our model, which achieves state-of-the-art performance without delving into extensive hyper-parameter tuning.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Multiple object tracking is an important but challenging computer vision task. Thanks to the significant progress in object detection field, tracking-by-detection becomes a trending paradigm for tracking multiple objects at the same time. Appearance models are also widely used for associating detection results. In this paper, we combine cosine similarity metric learning with very deep convolutional neural network, yielding a robust appearance pairwise matching model: a deep Siamese network capable of re-identifying the same object after a long time and dealing with partial and complete occlusion. Embedded in existing tracking algorithms, our model is a lightweight but powerful module for decision-making among track hypotheses. Experiments on MOT Challenge 2016 benchmark [1] demonstrate the effectiveness of our model, which achieves state-of-the-art performance without delving into extensive hyper-parameter tuning.
用于多目标跟踪的深度连体网络
多目标跟踪是一项重要但具有挑战性的计算机视觉任务。由于目标检测领域的重大进展,逐检测跟踪成为同时跟踪多个目标的趋势模式。外观模型也被广泛用于关联检测结果。在本文中,我们将余弦相似度度量学习与非常深度的卷积神经网络相结合,产生了一个鲁棒的外观配对模型:一个能够在很长一段时间后重新识别同一物体并处理部分和完全遮挡的深度暹罗网络。我们的模型嵌入到现有的跟踪算法中,是一个轻量级但功能强大的跟踪假设决策模块。在MOT Challenge 2016基准测试[1]上的实验证明了我们的模型的有效性,该模型无需深入研究大量的超参数调优即可实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信