R. Ristiana, S. Kaleg, Rina Mardiati, A. Muharam, A. Hapid, A. C. Budiman, Amin, Sudirja, Kristian Ismail
{"title":"Wireless Position Control of an Electric Power Steering System for Energy Optimization","authors":"R. Ristiana, S. Kaleg, Rina Mardiati, A. Muharam, A. Hapid, A. C. Budiman, Amin, Sudirja, Kristian Ismail","doi":"10.1109/TSSA56819.2022.10063883","DOIUrl":null,"url":null,"abstract":"This paper proposed an energy optimization strategy with an optimal control method approach based on wireless position control of electric power steering (EPS). The optimal control method consists of a discrete linear quadratic regulator (DLQR) as case-1 and a predictive control model (MPC) as case-2. Both are applied to see the potential of the optimal energy based on the comparison of control performance, resulting in a control design that eliminates unwanted vibrations and ensures system stability, and energy efficiency. In addition, both of these control designs can be implemented in a wireless system for position control of EPS using a mobile phone.","PeriodicalId":164665,"journal":{"name":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSSA56819.2022.10063883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed an energy optimization strategy with an optimal control method approach based on wireless position control of electric power steering (EPS). The optimal control method consists of a discrete linear quadratic regulator (DLQR) as case-1 and a predictive control model (MPC) as case-2. Both are applied to see the potential of the optimal energy based on the comparison of control performance, resulting in a control design that eliminates unwanted vibrations and ensures system stability, and energy efficiency. In addition, both of these control designs can be implemented in a wireless system for position control of EPS using a mobile phone.