Weighted Minimum-Length Rearrangement Scenarios

Pijus Simonaitis, A. Chateau, K. M. Swenson
{"title":"Weighted Minimum-Length Rearrangement Scenarios","authors":"Pijus Simonaitis, A. Chateau, K. M. Swenson","doi":"10.4230/LIPIcs.WABI.2019.13","DOIUrl":null,"url":null,"abstract":"We present the first known model of genome rearrangement with an arbitrary real-valued weight function on the rearrangements. It is based on the dominant model for the mathematical and algorithmic study of genome rearrangement, Double Cut and Join (DCJ). Our objective function is the sum or product of the weights of the DCJs in an evolutionary scenario, and the function can be minimized or maximized. If the likelihood of observing an independent DCJ was estimated based on biological conditions, for example, then this objective function could be the likelihood of observing the independent DCJs together in a scenario. We present an O(n 4)-time dynamic programming algorithm solving the Minimum Cost Parsimonious Scenario (MCPS) problem for co-tailed genomes with n genes (or syntenic blocks). Combining this with our previous work on MCPS yields a polynomial-time algorithm for general genomes. The key theoretical contribution is a novel link between the parsimonious DCJ (or 2-break) scenarios and quadrangulations of a regular polygon. To demonstrate that our algorithm is fast enough to treat biological data, we run it on syntenic blocks constructed for Human paired with Chimpanzee, Gibbon, Mouse, and Chicken. We argue that the Human and Gibbon pair is a particularly interesting model for the study of weighted genome rearrangements.","PeriodicalId":329847,"journal":{"name":"Workshop on Algorithms in Bioinformatics","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms in Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.WABI.2019.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present the first known model of genome rearrangement with an arbitrary real-valued weight function on the rearrangements. It is based on the dominant model for the mathematical and algorithmic study of genome rearrangement, Double Cut and Join (DCJ). Our objective function is the sum or product of the weights of the DCJs in an evolutionary scenario, and the function can be minimized or maximized. If the likelihood of observing an independent DCJ was estimated based on biological conditions, for example, then this objective function could be the likelihood of observing the independent DCJs together in a scenario. We present an O(n 4)-time dynamic programming algorithm solving the Minimum Cost Parsimonious Scenario (MCPS) problem for co-tailed genomes with n genes (or syntenic blocks). Combining this with our previous work on MCPS yields a polynomial-time algorithm for general genomes. The key theoretical contribution is a novel link between the parsimonious DCJ (or 2-break) scenarios and quadrangulations of a regular polygon. To demonstrate that our algorithm is fast enough to treat biological data, we run it on syntenic blocks constructed for Human paired with Chimpanzee, Gibbon, Mouse, and Chicken. We argue that the Human and Gibbon pair is a particularly interesting model for the study of weighted genome rearrangements.
加权最小长度重排场景
我们提出了已知的第一个基因组重排模型,在重排上具有任意实值权函数。它是基于基因组重排的数学和算法研究的主导模型,双切割和连接(DCJ)。我们的目标函数是进化场景中dcj权重的总和或乘积,该函数可以最小化或最大化。例如,如果观察到独立DCJ的可能性是基于生物条件估计的,那么这个目标函数可以是在一个场景中观察到独立DCJ的可能性。本文提出了一种O(n 4)时间动态规划算法,用于解决具有n个基因(或合成块)的共尾基因组的最小成本节约情景(MCPS)问题。将此与我们之前在MCPS上的工作相结合,可以得到一般基因组的多项式时间算法。关键的理论贡献是在简约的DCJ(或2-break)场景和正多边形的四边形之间建立了新的联系。为了证明我们的算法处理生物数据的速度足够快,我们在为人类与黑猩猩、长臂猿、老鼠和鸡配对构建的合成块上运行它。我们认为,人类和长臂猿对是研究加权基因组重排的一个特别有趣的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信