EM*: An EM Algorithm for Big Data

H. Kurban, Mark Jenne, Mehmet M. Dalkilic
{"title":"EM*: An EM Algorithm for Big Data","authors":"H. Kurban, Mark Jenne, Mehmet M. Dalkilic","doi":"10.1109/DSAA.2016.40","DOIUrl":null,"url":null,"abstract":"Existing data mining techniques, more particularly iterative learning algorithms, become overwhelmed with big data. While parallelism is an obvious and, usually, necessary strategy, we observe that both (1) continually revisiting data and (2) visiting all data are two of the most prominent problems especially for iterative, unsupervised algorithms like Expectation Maximization algorithm for clustering (EM-T). Our strategy is to embed EM-T into a non-linear hierarchical data structure(heap) that allows us to (1) separate data that needs to be revisited from data that does not and (2) narrow the iteration toward the data that is more difficult to cluster. We call this extended EM-T, EM*. We show our EM* algorithm outperform EM-T algorithm over large real world and synthetic data sets. We lastly conclude with some theoretic underpinnings that explain why EM* is successful.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Existing data mining techniques, more particularly iterative learning algorithms, become overwhelmed with big data. While parallelism is an obvious and, usually, necessary strategy, we observe that both (1) continually revisiting data and (2) visiting all data are two of the most prominent problems especially for iterative, unsupervised algorithms like Expectation Maximization algorithm for clustering (EM-T). Our strategy is to embed EM-T into a non-linear hierarchical data structure(heap) that allows us to (1) separate data that needs to be revisited from data that does not and (2) narrow the iteration toward the data that is more difficult to cluster. We call this extended EM-T, EM*. We show our EM* algorithm outperform EM-T algorithm over large real world and synthetic data sets. We lastly conclude with some theoretic underpinnings that explain why EM* is successful.
EM*:面向大数据的EM算法
现有的数据挖掘技术,尤其是迭代学习算法,已经被大数据淹没了。虽然并行是一个明显的,通常是必要的策略,但我们观察到(1)不断重访数据和(2)访问所有数据是两个最突出的问题,特别是对于迭代,无监督算法,如聚类期望最大化算法(EM-T)。我们的策略是将EM-T嵌入到非线性分层数据结构(堆)中,使我们能够(1)将需要重新访问的数据与不需要重新访问的数据分开;(2)将迭代范围缩小到更难以聚类的数据。我们称之为扩展的EM- t, EM*。我们的EM*算法在大型真实世界和合成数据集上优于EM- t算法。最后,我们总结了一些理论基础来解释为什么EM*是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信