LSTM based Human Activity Classification on Radar Range Profile

Xinyu Li, Yuan He, Yang Yang, Yuanquan Hong, Xiaojun Jing
{"title":"LSTM based Human Activity Classification on Radar Range Profile","authors":"Xinyu Li, Yuan He, Yang Yang, Yuanquan Hong, Xiaojun Jing","doi":"10.1109/COMPEM.2019.8779144","DOIUrl":null,"url":null,"abstract":"A bi-directional long short term memory(LSTM) based deep learning approach to classify human activities with radar high resolution range profiles(HRRPs) is investigated. MOCAP dataset, from Carnegie Mellon University, is used for HRRPs simulation. Six activities are classified with the proposed network and an appreciable classification result has been acquired. Experiment demonstrates that bi-directional LSTM performs better than unidirectional LSTM in this study. We also exam the activity duration of every piece of data to find out its impact on classification performance.","PeriodicalId":342849,"journal":{"name":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2019.8779144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

A bi-directional long short term memory(LSTM) based deep learning approach to classify human activities with radar high resolution range profiles(HRRPs) is investigated. MOCAP dataset, from Carnegie Mellon University, is used for HRRPs simulation. Six activities are classified with the proposed network and an appreciable classification result has been acquired. Experiment demonstrates that bi-directional LSTM performs better than unidirectional LSTM in this study. We also exam the activity duration of every piece of data to find out its impact on classification performance.
基于LSTM的雷达距离廓线人类活动分类
研究了一种基于双向长短期记忆(LSTM)的基于雷达高分辨率距离像(hrrp)的人类活动分类方法。利用卡内基梅隆大学的MOCAP数据集进行hrrp模拟。利用所提出的网络对6个活动进行了分类,并取得了可观的分类结果。实验表明,在本研究中,双向LSTM的性能优于单向LSTM。我们还检查了每条数据的活动持续时间,以找出其对分类性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信