An Extreme Learning Machine (ELM) Predictor for Electric Arc Furnaces' v-i Characteristics

Salam Ismaeel, A. Miri, A. Sadeghian, Dharmendra Chourishi
{"title":"An Extreme Learning Machine (ELM) Predictor for Electric Arc Furnaces' v-i Characteristics","authors":"Salam Ismaeel, A. Miri, A. Sadeghian, Dharmendra Chourishi","doi":"10.1109/CSCloud.2015.94","DOIUrl":null,"url":null,"abstract":"This paper presents an Extreme Learning Machine (ELM) time series prediction strategy to estimate the current and voltage behaviour of an Electric Arc Furnace (EAF). The proposed ELM predictor is designed for both long and short term predictions of the v-i characteristics of an EAF. The proposed predictor is evaluated using two real sensors' outputs collected over different time periods with a rate of 2000 samples per second, and its performance is compared against Feed-Forward Neural Networks (FFNN), Radial Basis Functions (RBF) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) algorithms. Experimental results obtained show the proposed ELM predictor to have superior speed and stability behaviour, while obtaining similar error values to comparable techniques.","PeriodicalId":278090,"journal":{"name":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2015.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an Extreme Learning Machine (ELM) time series prediction strategy to estimate the current and voltage behaviour of an Electric Arc Furnace (EAF). The proposed ELM predictor is designed for both long and short term predictions of the v-i characteristics of an EAF. The proposed predictor is evaluated using two real sensors' outputs collected over different time periods with a rate of 2000 samples per second, and its performance is compared against Feed-Forward Neural Networks (FFNN), Radial Basis Functions (RBF) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) algorithms. Experimental results obtained show the proposed ELM predictor to have superior speed and stability behaviour, while obtaining similar error values to comparable techniques.
电弧炉v-i特性的极限学习机(ELM)预测器
提出了一种利用极限学习机(ELM)时间序列预测电弧炉电流和电压的方法。提出的ELM预测器设计用于EAF的v-i特性的长期和短期预测。使用两个真实传感器在不同时间段内以每秒2000个样本的速率收集的输出来评估所提出的预测器,并将其性能与前馈神经网络(FFNN),径向基函数(RBF)和自适应神经模糊推理系统(ANFIS)算法进行比较。实验结果表明,所提出的ELM预测器具有优越的速度和稳定性行为,同时获得与同类技术相似的误差值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信