Rank estimation of parafac reducing both signal-dependent and signal-independent noise in hyperspectral image for target detection

Fu Min, Xuefeng Liu, S. Bourennane, C. Fossati
{"title":"Rank estimation of parafac reducing both signal-dependent and signal-independent noise in hyperspectral image for target detection","authors":"Fu Min, Xuefeng Liu, S. Bourennane, C. Fossati","doi":"10.1109/EUVIP.2016.7764591","DOIUrl":null,"url":null,"abstract":"One of the most important applications of hyperspectral im- age (HSI) is target detection which aims to detect the pres- ence of a signal of interest embedded in noise. This paper shows that both the signal-dependent (SD) and the signal- independent (SI) noise can be removed by applying a multi- linear algebra decomposition, namely the parallel factor anal- ysis (PARAFAC) decomposition, but the rank estimation of PARAFAC decomposition is time consuming. By analyzing the relationship between the rank value of PARAFAC decom- position and the target detection results, the initial value of the iteration to estimate the optimal rank can be set appro- priately instead of the cycle from 1 to start. The simulaitons show that the computing time can be reduced significantly by using this initialization strategy without affecting the target detection results.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most important applications of hyperspectral im- age (HSI) is target detection which aims to detect the pres- ence of a signal of interest embedded in noise. This paper shows that both the signal-dependent (SD) and the signal- independent (SI) noise can be removed by applying a multi- linear algebra decomposition, namely the parallel factor anal- ysis (PARAFAC) decomposition, but the rank estimation of PARAFAC decomposition is time consuming. By analyzing the relationship between the rank value of PARAFAC decom- position and the target detection results, the initial value of the iteration to estimate the optimal rank can be set appro- priately instead of the cycle from 1 to start. The simulaitons show that the computing time can be reduced significantly by using this initialization strategy without affecting the target detection results.
对高光谱图像进行秩估计,以降低与信号无关的噪声和依赖于信号的噪声
高光谱成像(HSI)最重要的应用之一是目标检测,其目的是检测噪声中是否存在感兴趣的信号。本文提出了一种多线性代数分解方法,即并行因子分析(PARAFAC)分解,可以去除信号相关噪声(SD)和信号无关噪声(SI),但PARAFAC分解的秩估计比较耗时。通过分析PARAFAC分解位置的秩值与目标检测结果之间的关系,可以适当地设置迭代的初始值来估计最优秩,而不是从1开始循环。仿真结果表明,在不影响目标检测结果的前提下,采用该初始化策略可以显著减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信