A Modified JadeR for Signal Separation under Gaussian Noise

M. Fatnan, Z. M. Hussain, Hind Rostom Mohammed, Najaf, Iraq.
{"title":"A Modified JadeR for Signal Separation under Gaussian Noise","authors":"M. Fatnan, Z. M. Hussain, Hind Rostom Mohammed, Najaf, Iraq.","doi":"10.31642/JOKMC/2018/050304","DOIUrl":null,"url":null,"abstract":"A Modified version of Joint Approximation Diagonalization Estimation of Real Signals algorithm (JADER) is proposed to enhance efficiency and speed of Blind Signal Separation (BSS). MJADER based on the mixture's dimensions minimization step, where the cumulant matrices have been estimated using a reduced-dimension observed mixture. The approach (M-JADER) is based on a threshold step, it is easy to implement, computationally efficient and faster than standard JADER about 50% where it has less running time. The comparison done under tow types of niose(semi-white Gaussian noise and Uniform noise)","PeriodicalId":115908,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/JOKMC/2018/050304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Modified version of Joint Approximation Diagonalization Estimation of Real Signals algorithm (JADER) is proposed to enhance efficiency and speed of Blind Signal Separation (BSS). MJADER based on the mixture's dimensions minimization step, where the cumulant matrices have been estimated using a reduced-dimension observed mixture. The approach (M-JADER) is based on a threshold step, it is easy to implement, computationally efficient and faster than standard JADER about 50% where it has less running time. The comparison done under tow types of niose(semi-white Gaussian noise and Uniform noise)
一种用于高斯噪声下信号分离的改进JadeR
为了提高盲信号分离的效率和速度,提出了一种改进的联合逼近对角化估计算法(JADER)。MJADER基于混合物的尺寸最小化步骤,其中累积矩阵已使用降维观察混合物估计。该方法(M-JADER)基于阈值步进,易于实现,计算效率高,运行时间短,比标准JADER快50%左右。两种噪声(半白高斯噪声和均匀噪声)下的比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信