Wavelet transform for determination of state and trajectory sensitivity of a singular control system

A. Sengupta, A. Deb, R. Paul
{"title":"Wavelet transform for determination of state and trajectory sensitivity of a singular control system","authors":"A. Sengupta, A. Deb, R. Paul","doi":"10.1109/INDCON.2010.5712606","DOIUrl":null,"url":null,"abstract":"In this paper wavelet transform is used to determine the state and trajectory sensitivity of homogeneous and non-homogeneous systems. The differential-algebraic equation describing a system is converted via wavelet transform to an algebraic generalized Lyapunov equation which is solved for the coefficients of the state variables in terms of Haar basis. Further, problems of trajectory sensitivity analysis for singular as well as nonsingular systems have also been explored using the same orthogonal basis. Finally, using Kronecker product method, a generalized program is developed to determine the state and sensitivity for any number of basis function in Haar domain.","PeriodicalId":109071,"journal":{"name":"2010 Annual IEEE India Conference (INDICON)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2010.5712606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper wavelet transform is used to determine the state and trajectory sensitivity of homogeneous and non-homogeneous systems. The differential-algebraic equation describing a system is converted via wavelet transform to an algebraic generalized Lyapunov equation which is solved for the coefficients of the state variables in terms of Haar basis. Further, problems of trajectory sensitivity analysis for singular as well as nonsingular systems have also been explored using the same orthogonal basis. Finally, using Kronecker product method, a generalized program is developed to determine the state and sensitivity for any number of basis function in Haar domain.
用小波变换确定奇异控制系统的状态和轨迹灵敏度
本文将小波变换用于确定齐次和非齐次系统的状态和轨迹灵敏度。将描述系统的微分代数方程通过小波变换转化为代数广义Lyapunov方程,用Haar基求解状态变量的系数。此外,利用相同的正交基,探讨了奇异系统和非奇异系统的轨迹灵敏度分析问题。最后,利用Kronecker积法,给出了确定Haar域中任意数量基函数的状态和灵敏度的广义程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信