A new approach to dealing with missing values in data-driven fuzzy modeling

Rui Jorge Almeida, U. Kaymak, J. Sousa
{"title":"A new approach to dealing with missing values in data-driven fuzzy modeling","authors":"Rui Jorge Almeida, U. Kaymak, J. Sousa","doi":"10.1109/FUZZY.2010.5584894","DOIUrl":null,"url":null,"abstract":"Real word data sets often contain many missing elements. Most algorithms that automatically develop a rule-based model are not well suited to deal with incomplete data. The usual technique is to disregard the missing values or substitute them by a best guess estimate, which can bias the results. In this paper we propose a new method for estimating the parameters of a Takagi-Sugeno fuzzy model in the presence of incomplete data. We also propose an inference mechanism that can deal with the incomplete data. The presented method has the added advantage that it does not require imputation or iterative guess-estimate of the missing values. This methodology is applied to fuzzy modeling of a classification and regression problem. The performance of the obtained models are comparable with the results obtained when using a complete data set.","PeriodicalId":377799,"journal":{"name":"International Conference on Fuzzy Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2010.5584894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Real word data sets often contain many missing elements. Most algorithms that automatically develop a rule-based model are not well suited to deal with incomplete data. The usual technique is to disregard the missing values or substitute them by a best guess estimate, which can bias the results. In this paper we propose a new method for estimating the parameters of a Takagi-Sugeno fuzzy model in the presence of incomplete data. We also propose an inference mechanism that can deal with the incomplete data. The presented method has the added advantage that it does not require imputation or iterative guess-estimate of the missing values. This methodology is applied to fuzzy modeling of a classification and regression problem. The performance of the obtained models are comparable with the results obtained when using a complete data set.
数据驱动模糊建模中缺失值处理的新方法
真实的word数据集通常包含许多缺失的元素。大多数自动开发基于规则的模型的算法不太适合处理不完整的数据。通常的技术是忽略缺失值或用最佳猜测估计代替它们,这可能会使结果产生偏差。本文提出了一种在不完全数据存在下估计Takagi-Sugeno模糊模型参数的新方法。我们还提出了一种可以处理不完全数据的推理机制。该方法的另一个优点是不需要对缺失值进行输入或迭代猜测估计。该方法应用于分类回归问题的模糊建模。所得模型的性能与使用完整数据集时的结果具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信