Parallel particle swarm optimization applied to the protein folding problem

Luis Germán Pérez-Hernández, K. Rodríguez-Vázquez, R. Garduño-Juárez
{"title":"Parallel particle swarm optimization applied to the protein folding problem","authors":"Luis Germán Pérez-Hernández, K. Rodríguez-Vázquez, R. Garduño-Juárez","doi":"10.1145/1569901.1570163","DOIUrl":null,"url":null,"abstract":"This article presents the implementation of a bio-inspired algorithm, which is the algorithm of particle swarm optimization (PSO) in with the objective of minimizing the function of conformational energy ECEPP/3 for the protein folding problem (PFP) for real conformations considering structural restrictions. In this case, using a representation of torsion angles of the skeleton and the side chains, applying the sequence of amino acid of the peptide leu-enkephalin for the prediction of 3D structure of minimum energy. The quality of the results is compared with other techniques reported in literature. Subsequently, the PSO is used to predict the structure of unknown proteins.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This article presents the implementation of a bio-inspired algorithm, which is the algorithm of particle swarm optimization (PSO) in with the objective of minimizing the function of conformational energy ECEPP/3 for the protein folding problem (PFP) for real conformations considering structural restrictions. In this case, using a representation of torsion angles of the skeleton and the side chains, applying the sequence of amino acid of the peptide leu-enkephalin for the prediction of 3D structure of minimum energy. The quality of the results is compared with other techniques reported in literature. Subsequently, the PSO is used to predict the structure of unknown proteins.
平行粒子群算法在蛋白质折叠问题中的应用
针对考虑结构限制的真实构象的蛋白质折叠问题,提出了一种以最小化构象能ECEPP/3函数为目标的仿生粒子群优化算法(PSO)。在这种情况下,使用骨架和侧链的扭转角表示,应用肽leu-enkephalin的氨基酸序列来预测最小能量的3D结构。结果的质量与文献中报道的其他技术进行了比较。随后,PSO被用于预测未知蛋白质的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信