High Quality True-Positive Prediction for Fiscal Fraud Detection

S. Basta, Fabio Fassetti, M. Guarascio, G. Manco, F. Giannotti, D. Pedreschi, L. Spinsanti, Gianfilippo Papi, S. Pisani
{"title":"High Quality True-Positive Prediction for Fiscal Fraud Detection","authors":"S. Basta, Fabio Fassetti, M. Guarascio, G. Manco, F. Giannotti, D. Pedreschi, L. Spinsanti, Gianfilippo Papi, S. Pisani","doi":"10.1109/ICDMW.2009.59","DOIUrl":null,"url":null,"abstract":"In this paper we describe an experience resulting from the collaboration among Data Mining researchers, domain experts of the Italian Revenue Agency, and IT professionals, aimed at detecting fraudulent VAT credit claims. The outcome is an auditing methodology based on a rule-based system, which is capable of trading among conflicting issues, such as maximizing audit benefits, minimizing false positive audit predictions, or deterring probable upcoming frauds. We describe the methodology in detail, and illustrate its practical effectiveness compared to classical predictive systems from the literature.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper we describe an experience resulting from the collaboration among Data Mining researchers, domain experts of the Italian Revenue Agency, and IT professionals, aimed at detecting fraudulent VAT credit claims. The outcome is an auditing methodology based on a rule-based system, which is capable of trading among conflicting issues, such as maximizing audit benefits, minimizing false positive audit predictions, or deterring probable upcoming frauds. We describe the methodology in detail, and illustrate its practical effectiveness compared to classical predictive systems from the literature.
财政欺诈检测的高质量真正预测
在本文中,我们描述了数据挖掘研究人员,意大利税务局领域专家和IT专业人员之间合作的经验,旨在检测欺诈性增值税抵免索赔。其结果是基于基于规则的系统的审计方法,该方法能够在相互冲突的问题之间进行交易,例如最大化审计收益、最小化误报审计预测或阻止可能即将发生的欺诈。我们详细描述了该方法,并说明了其与文献中的经典预测系统相比的实际有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信