Structuralizing Disaster-scene Data through Auto-captioning

Alina Klerings, Shimin Tang, Zhiqiang Chen
{"title":"Structuralizing Disaster-scene Data through Auto-captioning","authors":"Alina Klerings, Shimin Tang, Zhiqiang Chen","doi":"10.1145/3356395.3365671","DOIUrl":null,"url":null,"abstract":"Disaster-scene images documenting the magnitude and effects of natural disasters nowadays can be easily collected through crowdsourcing aided by mobile technologies (e.g., smartphones or drones). One challenging issue that confronts the first-responders who desire the use of such data is the non-structured nature of these crowdsourced images. Among other techniques, one natural way is to structuralize disaster-scene images through captioning. Through captioning, their imagery contents are augmented by descriptive captions that further enable more effective search and query (S&Q). This work presents a preliminary test by exploiting an end-to-end deep learning framework with a linked CNN-LSTM architecture. Demonstration of the results and quantitative evaluation are presented that showcase the validity of the proposed concept.","PeriodicalId":232191,"journal":{"name":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Advances on Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356395.3365671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disaster-scene images documenting the magnitude and effects of natural disasters nowadays can be easily collected through crowdsourcing aided by mobile technologies (e.g., smartphones or drones). One challenging issue that confronts the first-responders who desire the use of such data is the non-structured nature of these crowdsourced images. Among other techniques, one natural way is to structuralize disaster-scene images through captioning. Through captioning, their imagery contents are augmented by descriptive captions that further enable more effective search and query (S&Q). This work presents a preliminary test by exploiting an end-to-end deep learning framework with a linked CNN-LSTM architecture. Demonstration of the results and quantitative evaluation are presented that showcase the validity of the proposed concept.
通过自动标注来结构化灾难场景数据
如今,记录自然灾害规模和影响的灾害现场图像可以通过移动技术(例如智能手机或无人机)的众包方式轻松收集。希望使用这些数据的第一反应者面临的一个具有挑战性的问题是这些众包图像的非结构化性质。在其他技术中,一种自然的方法是通过字幕将灾难现场图像结构化。通过字幕,它们的图像内容被描述性字幕增强,进一步实现更有效的搜索和查询(S&Q)。这项工作通过利用具有链接CNN-LSTM架构的端到端深度学习框架提出了一个初步测试。结果的论证和定量评价展示了所提出的概念的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信