Steno AI at SemEval-2023 Task 6: Rhetorical Role Labelling of Legal Documents using Transformers and Graph Neural Networks

Anshika Gupta, Shaz Furniturewala, V. Kumari, Yashvardhan Sharma
{"title":"Steno AI at SemEval-2023 Task 6: Rhetorical Role Labelling of Legal Documents using Transformers and Graph Neural Networks","authors":"Anshika Gupta, Shaz Furniturewala, V. Kumari, Yashvardhan Sharma","doi":"10.48550/arXiv.2305.04100","DOIUrl":null,"url":null,"abstract":"A legal document is usually long and dense requiring human effort to parse it. It also contains significant amounts of jargon which make deriving insights from it using existing models a poor approach. This paper presents the approaches undertaken to perform the task of rhetorical role labelling on Indian Court Judgements. We experiment with graph based approaches like Graph Convolutional Networks and Label Propagation Algorithm, and transformer-based approaches including variants of BERT to improve accuracy scores on text classification of complex legal documents.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.04100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A legal document is usually long and dense requiring human effort to parse it. It also contains significant amounts of jargon which make deriving insights from it using existing models a poor approach. This paper presents the approaches undertaken to perform the task of rhetorical role labelling on Indian Court Judgements. We experiment with graph based approaches like Graph Convolutional Networks and Label Propagation Algorithm, and transformer-based approaches including variants of BERT to improve accuracy scores on text classification of complex legal documents.
任务6:使用变压器和图神经网络的法律文件修辞角色标注
法律文件通常又长又密集,需要人力来解析。它还包含大量的术语,这使得使用现有模型从中获得见解是一种糟糕的方法。本文介绍了在印度法院判决中执行修辞角色标签任务所采取的方法。我们尝试了基于图的方法,如图卷积网络和标签传播算法,以及基于转换器的方法,包括BERT的变体,以提高复杂法律文件文本分类的准确性分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信