Joint Optimization of Task Offloading and Resource Allocation in Mobile Edge Computing System

Ju Huang, Yongwen Du, Yijia Zheng, Xiquan Zhang
{"title":"Joint Optimization of Task Offloading and Resource Allocation in Mobile Edge Computing System","authors":"Ju Huang, Yongwen Du, Yijia Zheng, Xiquan Zhang","doi":"10.1109/ICCECE58074.2023.10135422","DOIUrl":null,"url":null,"abstract":"Traditional cloud computing usually does not meet the user needs for latency-sensitive applications, while mobile edge computing (MEC) reduces the pressure on the core network by sinking the computing power of the central cloud to the edge server close to the userTask offloading and resource allocation issues in MEC systems for multi-user, multi-servers. This article first uses the Lyapunov optimization technique to reconstruct the stochastic optimization problem.then uses the genetic algorithm to formulate the unloading decision, and finally uses the binary search method and the Lagrangian multiplier method to obtain the optimal solution of power allocation and computational resource allocation respectively. Through experimental simulation, the scheme adopted in this paper can reduce the cost and improve the system performance while keeping the system stable.","PeriodicalId":120030,"journal":{"name":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Consumer Electronics and Computer Engineering (ICCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECE58074.2023.10135422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional cloud computing usually does not meet the user needs for latency-sensitive applications, while mobile edge computing (MEC) reduces the pressure on the core network by sinking the computing power of the central cloud to the edge server close to the userTask offloading and resource allocation issues in MEC systems for multi-user, multi-servers. This article first uses the Lyapunov optimization technique to reconstruct the stochastic optimization problem.then uses the genetic algorithm to formulate the unloading decision, and finally uses the binary search method and the Lagrangian multiplier method to obtain the optimal solution of power allocation and computational resource allocation respectively. Through experimental simulation, the scheme adopted in this paper can reduce the cost and improve the system performance while keeping the system stable.
移动边缘计算系统中任务卸载与资源分配的联合优化
传统的云计算通常不能满足用户对延迟敏感应用的需求,而移动边缘计算(MEC)通过将中心云的计算能力下沉到靠近用户的边缘服务器上,减轻了对核心网络的压力,解决了MEC系统中多用户、多服务器的任务卸载和资源分配问题。本文首先利用李雅普诺夫优化技术重构随机优化问题。然后使用遗传算法制定卸载决策,最后使用二分搜索法和拉格朗日乘子法分别获得功率分配和计算资源分配的最优解。通过实验仿真,本文所采用的方案在保持系统稳定的同时,降低了成本,提高了系统性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信