Alternative membership function for sequential fuzzy clustering

J. Sum, L. Chan
{"title":"Alternative membership function for sequential fuzzy clustering","authors":"J. Sum, L. Chan","doi":"10.1109/FUZZY.1994.343578","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative membership function for fuzzy c-mean. According to this membership function and Bezdek's definition, we derive two sequential algorithms for fuzzy c-mean. Both of them are stochastic gradient descent algorithms which minimize Bezdek's objective functional. Analytical result indicates that both algorithms are actually compatible with each other. The convergence properties of both algorithms are studied. As the update equations are so simple, these sequential algorithms are embedded into neural network to form a class of fuzzy neural network analogue to unsupervised type neural network such that competitive learning is a special case.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an alternative membership function for fuzzy c-mean. According to this membership function and Bezdek's definition, we derive two sequential algorithms for fuzzy c-mean. Both of them are stochastic gradient descent algorithms which minimize Bezdek's objective functional. Analytical result indicates that both algorithms are actually compatible with each other. The convergence properties of both algorithms are studied. As the update equations are so simple, these sequential algorithms are embedded into neural network to form a class of fuzzy neural network analogue to unsupervised type neural network such that competitive learning is a special case.<>
序列模糊聚类的备选隶属函数
本文提出了模糊c均值的另一种隶属函数。根据这个隶属函数和Bezdek的定义,我们导出了两种排序模糊c均值的算法。这两种算法都是最小化Bezdek目标泛函的随机梯度下降算法。分析结果表明,两种算法实际上是相互兼容的。研究了两种算法的收敛性。由于更新方程非常简单,将这些序列算法嵌入到神经网络中,形成一类类似于无监督型神经网络的模糊神经网络,其中竞争学习是一个特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信