Optimization of Fuzzy C-Means Clustering by Genetic Algorithms Based on Sizable Chromosome

Jie-sheng Wang, Xian-wen Gao
{"title":"Optimization of Fuzzy C-Means Clustering by Genetic Algorithms Based on Sizable Chromosome","authors":"Jie-sheng Wang, Xian-wen Gao","doi":"10.1109/CCPR.2009.5344155","DOIUrl":null,"url":null,"abstract":"Aiming at the predifined clustering number, strong randomness and easiness to fall into local optimum , a new self-adaptive FCM algorithm based on genetic algorithm is proposed. The number of fuzzy clustering and cluster centers are optimized by sizable-chromosome genetic algorithms (SC-GAs). Cut operator and splice operator are adopted to combination the chromosome to form new individuals. Non-uniform mutation operator is used to enhance the population diversity. The new proposed method can obtain the global optimam compared to standard FCM algorithm. The simulation experimental result s with IRIS demonstrate the feasibility and effectiveness of the new algorithm.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the predifined clustering number, strong randomness and easiness to fall into local optimum , a new self-adaptive FCM algorithm based on genetic algorithm is proposed. The number of fuzzy clustering and cluster centers are optimized by sizable-chromosome genetic algorithms (SC-GAs). Cut operator and splice operator are adopted to combination the chromosome to form new individuals. Non-uniform mutation operator is used to enhance the population diversity. The new proposed method can obtain the global optimam compared to standard FCM algorithm. The simulation experimental result s with IRIS demonstrate the feasibility and effectiveness of the new algorithm.
基于可观染色体遗传算法的模糊c均值聚类优化
针对聚类数预定义、随机性强、易陷入局部最优的特点,提出了一种基于遗传算法的自适应FCM算法。采用大小染色体遗传算法(SC-GAs)优化模糊聚类个数和聚类中心数。采用剪切算子和剪接算子对染色体进行组合,形成新的个体。采用非均匀变异算子增强种群多样性。与标准FCM算法相比,该方法可以获得全局最优。IRIS的仿真实验结果验证了新算法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信