Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image

Shaowu Yang, S. Scherer, Konstantin Schauwecker, A. Zell
{"title":"Onboard monocular vision for landing of an MAV on a landing site specified by a single reference image","authors":"Shaowu Yang, S. Scherer, Konstantin Schauwecker, A. Zell","doi":"10.1109/ICUAS.2013.6564704","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time monocular vision solution for MAVs to autonomously search for and land on an arbitrary landing site. The autonomous MAV is provided with only one single reference image of the landing site with an unknown size before initiating this task. To search for such landing sites, we extend a well-known visual SLAM algorithm that enables autonomous navigation of the MAV in unknown environments. A multi-scale ORB feature based method is implemented and integrated into the SLAM framework for landing site detection. We use a RANSAC-based method to locate the landing site within the map of the SLAM system, taking advantage of those map points associated with the detected landing site. We demonstrate the efficiency of the presented vision system in autonomous flight, and compare its accuracy with ground truth data provided by an external tracking system.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper presents a real-time monocular vision solution for MAVs to autonomously search for and land on an arbitrary landing site. The autonomous MAV is provided with only one single reference image of the landing site with an unknown size before initiating this task. To search for such landing sites, we extend a well-known visual SLAM algorithm that enables autonomous navigation of the MAV in unknown environments. A multi-scale ORB feature based method is implemented and integrated into the SLAM framework for landing site detection. We use a RANSAC-based method to locate the landing site within the map of the SLAM system, taking advantage of those map points associated with the detected landing site. We demonstrate the efficiency of the presented vision system in autonomous flight, and compare its accuracy with ground truth data provided by an external tracking system.
由单个参考图像指定的着陆点上的MAV的机载单目视觉着陆
提出了一种mav自主搜索并在任意着陆点着陆的实时单目视觉解决方案。在开始这项任务之前,自主MAV只提供一个未知大小的着陆点的单一参考图像。为了搜索这样的着陆点,我们扩展了一个著名的视觉SLAM算法,使MAV能够在未知环境中自主导航。实现了一种基于多尺度ORB特征的着陆点检测方法,并将其集成到SLAM框架中。我们利用与探测到的着陆点相关的地图点,使用基于ransac的方法在SLAM系统地图中定位着陆点。我们证明了所提出的视觉系统在自主飞行中的效率,并将其精度与外部跟踪系统提供的地面真实数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信