Evaluating freshness of produce using transfer learning

Antony Lam, Y. Kuno, Imari Sato
{"title":"Evaluating freshness of produce using transfer learning","authors":"Antony Lam, Y. Kuno, Imari Sato","doi":"10.1109/FCV.2015.7103747","DOIUrl":null,"url":null,"abstract":"Automated quality control of produce such as fruits and vegetables is of great importance to industry. In particular, the ability to evaluate the state of decay for various produce items would allow for efficient sorting of produce such that the freshest items could be more quickly shipped to consumers. Unfortunately, training an accurate classifier for determining how decayed produce is can require a large amount of data. This problem is further exacerbated by the large variety of produce available as different items would exhibit decay in different ways. In this paper, we propose an algorithm that can learn an accurate ranking classifier for sorting produce using only a small amount of data. We achieve this through our proposed transfer learning algorithm that is able to automatically select good preexisting source task training data to supplement insufficient training data in the given target task. We show how much our algorithm improves over standard training on real images of produce items captured at various stages of decay.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated quality control of produce such as fruits and vegetables is of great importance to industry. In particular, the ability to evaluate the state of decay for various produce items would allow for efficient sorting of produce such that the freshest items could be more quickly shipped to consumers. Unfortunately, training an accurate classifier for determining how decayed produce is can require a large amount of data. This problem is further exacerbated by the large variety of produce available as different items would exhibit decay in different ways. In this paper, we propose an algorithm that can learn an accurate ranking classifier for sorting produce using only a small amount of data. We achieve this through our proposed transfer learning algorithm that is able to automatically select good preexisting source task training data to supplement insufficient training data in the given target task. We show how much our algorithm improves over standard training on real images of produce items captured at various stages of decay.
用迁移学习评价农产品的新鲜度
水果和蔬菜等农产品的自动化质量控制对工业具有重要意义。特别是,评估各种农产品腐烂状态的能力将允许对农产品进行有效分类,从而使最新鲜的产品能够更快地运送到消费者手中。不幸的是,训练一个准确的分类器来确定产品的腐烂程度可能需要大量的数据。由于产品种类繁多,不同的产品会以不同的方式腐烂,这进一步加剧了这个问题。在本文中,我们提出了一种算法,可以学习一个准确的排序分类器,仅使用少量的数据进行排序。我们通过提出的迁移学习算法来实现这一点,该算法能够自动选择预先存在的好的源任务训练数据来补充给定目标任务中不足的训练数据。我们展示了在不同腐烂阶段捕获的农产品的真实图像上,我们的算法比标准训练提高了多少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信