Gesture recognition using symbolic aggregate approximation and dynamic time warping on motion data

A. Mezari, Ilias Maglogiannis
{"title":"Gesture recognition using symbolic aggregate approximation and dynamic time warping on motion data","authors":"A. Mezari, Ilias Maglogiannis","doi":"10.1145/3154862.3154927","DOIUrl":null,"url":null,"abstract":"In the area of advanced human-computer interaction, automatic gesture recognition is an important field. Motion data produced by the accelerometer of a smart watch can be utilized in hand gesture recognition. In this work we examine the use of a commodity smart watch and a smartphone as the capture and the processing units respectively, for recognizing gestures. We claim that if the proper gesture recognition algorithms are applied, the recognition of natural gestures i.e. 3-D gestures easily performed by an individual can be accurate enough to be useful in everyday life activities. Symbolic Aggregate Approximation (SAX) and Dynamic Time Warping (DTW) methodologies are utilized in this context and evaluated using a set of six 3-D natural gestures.","PeriodicalId":200810,"journal":{"name":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th EAI International Conference on Pervasive Computing Technologies for Healthcare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3154862.3154927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the area of advanced human-computer interaction, automatic gesture recognition is an important field. Motion data produced by the accelerometer of a smart watch can be utilized in hand gesture recognition. In this work we examine the use of a commodity smart watch and a smartphone as the capture and the processing units respectively, for recognizing gestures. We claim that if the proper gesture recognition algorithms are applied, the recognition of natural gestures i.e. 3-D gestures easily performed by an individual can be accurate enough to be useful in everyday life activities. Symbolic Aggregate Approximation (SAX) and Dynamic Time Warping (DTW) methodologies are utilized in this context and evaluated using a set of six 3-D natural gestures.
基于符号聚合逼近和动态时间扭曲的手势识别
在高级人机交互领域,自动手势识别是一个重要的研究领域。智能手表的加速度计产生的运动数据可以用于手势识别。在这项工作中,我们研究了使用商品智能手表和智能手机分别作为捕获和处理单元,以识别手势。我们声称,如果应用适当的手势识别算法,识别自然手势,即个人容易执行的3d手势,可以准确到足以在日常生活活动中使用。符号聚合近似(SAX)和动态时间翘曲(DTW)方法在这种情况下被使用,并使用一组6个3-D自然手势进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信