{"title":"Supernumerary Robotic Limbs for Next Generation Space Suit Technology","authors":"Erik Ballesteros, Brandon Man, H. Asada","doi":"10.1109/ICRA48891.2023.10161579","DOIUrl":null,"url":null,"abstract":"This paper discusses the incorporation of a pair of Supernumerary Robotic Limbs (SuperLimbs) onto the next generation of NASA space suits. The wearable robots attached to the space suit assist an astronaut in performing Extra-Vehicular Activities (EVAs). The SuperLimbs grab handrails fixed to the outside of a space vehicle to securely hold the astronaut body. The astronaut can use both hands for performing an EVA task, rather than using one hand for securing the body or operating a tether. The SuperLimbs can also assist an astronaut in repositioning the body and stabilizing it during an EVA mission. A control algorithm based on Admittance Control is developed for a) virtually reducing the inertial load of the entire body so that an astronaut can reposition his/her body with reduced effort, and b) bracing the body stably despite reaction forces and disturbances acting on the astronaut during an EVA operation. A full-scale prototype of Space Suit SuperLimbs was constructed and tested. Results from the experimentation indicated that with the aid of SuperLimbs, energy consumption during EVAs is reduced significantly.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper discusses the incorporation of a pair of Supernumerary Robotic Limbs (SuperLimbs) onto the next generation of NASA space suits. The wearable robots attached to the space suit assist an astronaut in performing Extra-Vehicular Activities (EVAs). The SuperLimbs grab handrails fixed to the outside of a space vehicle to securely hold the astronaut body. The astronaut can use both hands for performing an EVA task, rather than using one hand for securing the body or operating a tether. The SuperLimbs can also assist an astronaut in repositioning the body and stabilizing it during an EVA mission. A control algorithm based on Admittance Control is developed for a) virtually reducing the inertial load of the entire body so that an astronaut can reposition his/her body with reduced effort, and b) bracing the body stably despite reaction forces and disturbances acting on the astronaut during an EVA operation. A full-scale prototype of Space Suit SuperLimbs was constructed and tested. Results from the experimentation indicated that with the aid of SuperLimbs, energy consumption during EVAs is reduced significantly.