Exploratory Landscape Analysis Based Parameter Control

M. Pikalov, Aleksei Pismerov
{"title":"Exploratory Landscape Analysis Based Parameter Control","authors":"M. Pikalov, Aleksei Pismerov","doi":"10.1145/3583133.3596364","DOIUrl":null,"url":null,"abstract":"Parameter tuning in evolutionary algorithms is a very important topic, as the correct choice of parameters greatly affects their performance. Fitness landscape analysis can help identify similar problems and allow for gathering problem structure insights for fitness-aware optimization algorithm parameter choice. In this paper, we present an approach to an automatic dynamic parameter control method that uses exploratory landscape analysis and machine learning. Using a dataset of optimal parameter values we collected on different instances of W-model benchmark problem, we trained a machine learning model capable of suggesting parameter values for the (1 + (λ, λ)) genetic algorithm. The results of our experiments show that the machine learning model is able to capture important landscape features and recommend algorithm parameters based on this information. The comparison results with other tuning methods suggest this approach is more effective than static tuning or heuristics-based dynamic parameter control.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parameter tuning in evolutionary algorithms is a very important topic, as the correct choice of parameters greatly affects their performance. Fitness landscape analysis can help identify similar problems and allow for gathering problem structure insights for fitness-aware optimization algorithm parameter choice. In this paper, we present an approach to an automatic dynamic parameter control method that uses exploratory landscape analysis and machine learning. Using a dataset of optimal parameter values we collected on different instances of W-model benchmark problem, we trained a machine learning model capable of suggesting parameter values for the (1 + (λ, λ)) genetic algorithm. The results of our experiments show that the machine learning model is able to capture important landscape features and recommend algorithm parameters based on this information. The comparison results with other tuning methods suggest this approach is more effective than static tuning or heuristics-based dynamic parameter control.
基于参数控制的探索性景观分析
参数优化是进化算法中一个非常重要的问题,参数的正确选择对进化算法的性能有很大的影响。适应度景观分析可以帮助识别类似的问题,并为适应度感知优化算法参数的选择收集问题结构见解。在本文中,我们提出了一种使用探索性景观分析和机器学习的自动动态参数控制方法。使用我们在w模型基准问题的不同实例上收集的最优参数值数据集,我们训练了一个能够为(1 + (λ, λ))遗传算法建议参数值的机器学习模型。我们的实验结果表明,机器学习模型能够捕获重要的景观特征,并根据这些信息推荐算法参数。与其他调优方法的比较结果表明,该方法比静态调优或基于启发式的动态参数控制更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信