An Analysis of Traces from a Production MapReduce Cluster

Soila Kavulya, Jiaqi Tan, R. Gandhi, P. Narasimhan
{"title":"An Analysis of Traces from a Production MapReduce Cluster","authors":"Soila Kavulya, Jiaqi Tan, R. Gandhi, P. Narasimhan","doi":"10.1109/CCGRID.2010.112","DOIUrl":null,"url":null,"abstract":"MapReduce is a programming paradigm for parallel processing that is increasingly being used for data-intensive applications in cloud computing environments. An understanding of the characteristics of workloads running in MapReduce environments benefits both the service providers in the cloud and users: the service provider can use this knowledge to make better scheduling decisions, while the user can learn what aspects of their jobs impact performance. This paper analyzes 10-months of MapReduce logs from the M45 supercomputing cluster which Yahoo! made freely available to select universities for academic research. We characterize resource utilization patterns, job patterns, and sources of failures. We use an instance-based learning technique that exploits temporal locality to predict job completion times from historical data and identify potential performance problems in our dataset.","PeriodicalId":444485,"journal":{"name":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"354","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2010.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 354

Abstract

MapReduce is a programming paradigm for parallel processing that is increasingly being used for data-intensive applications in cloud computing environments. An understanding of the characteristics of workloads running in MapReduce environments benefits both the service providers in the cloud and users: the service provider can use this knowledge to make better scheduling decisions, while the user can learn what aspects of their jobs impact performance. This paper analyzes 10-months of MapReduce logs from the M45 supercomputing cluster which Yahoo! made freely available to select universities for academic research. We characterize resource utilization patterns, job patterns, and sources of failures. We use an instance-based learning technique that exploits temporal locality to predict job completion times from historical data and identify potential performance problems in our dataset.
生产MapReduce集群轨迹分析
MapReduce是一种用于并行处理的编程范例,越来越多地用于云计算环境中的数据密集型应用程序。了解在MapReduce环境中运行的工作负载的特征对云中的服务提供商和用户都有好处:服务提供商可以使用这些知识来做出更好的调度决策,而用户可以了解他们的作业影响性能的哪些方面。本文分析了M45超级计算集群10个月的MapReduce日志。免费提供给选定的大学进行学术研究。我们描述了资源利用模式、作业模式和故障来源。我们使用基于实例的学习技术,利用时间局部性从历史数据中预测作业完成时间,并识别数据集中潜在的性能问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信