{"title":"Integration of poses to enhance the shape of the object tracking from a single view video","authors":"J. Hemavathy, L. Sindhia, Dhananjay Kumar","doi":"10.1109/ICRTIT.2014.6996119","DOIUrl":null,"url":null,"abstract":"In computer vision, tracking human pose has received a growing attention in recent years. The existing methods used multi-view videos and camera calibrations to enhance the shape of the object in 3D view. In this paper, tracking and partial reconstruction of the shape of the object from a single view video is identified. The goal of the proposed integrated method is to detect the movement of a person more accurately in 2D view. The integrated method is a combination of Silhouette based pose estimation and Scene flow based pose estimation. The silhouette based pose estimation is used to enhance the shape of the object for 3D reconstruction and scene flow based pose estimation is used to capture the size as well as the stability of the object. By integrating these two poses, the accurate shape of the object has been calculated from a single view video.","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In computer vision, tracking human pose has received a growing attention in recent years. The existing methods used multi-view videos and camera calibrations to enhance the shape of the object in 3D view. In this paper, tracking and partial reconstruction of the shape of the object from a single view video is identified. The goal of the proposed integrated method is to detect the movement of a person more accurately in 2D view. The integrated method is a combination of Silhouette based pose estimation and Scene flow based pose estimation. The silhouette based pose estimation is used to enhance the shape of the object for 3D reconstruction and scene flow based pose estimation is used to capture the size as well as the stability of the object. By integrating these two poses, the accurate shape of the object has been calculated from a single view video.