A Structural Model of Analyst Forecasts: Applications to Forecast Informativeness and Dispersion

Jonathan Clarke, Soohun Kim, Kyuseok Lee, Kyoungwon Seo
{"title":"A Structural Model of Analyst Forecasts: Applications to Forecast Informativeness and Dispersion","authors":"Jonathan Clarke, Soohun Kim, Kyuseok Lee, Kyoungwon Seo","doi":"10.2139/ssrn.3604705","DOIUrl":null,"url":null,"abstract":"We modify Morris and Shin (2002) to develop a structural model of analyst earnings forecasts. The model allows for analysts to herd due to informational effects and non-informational incentives. The benefits of our model are twofold: (1) we can decompose earnings forecasts into informational and bias components, and measure the stock price response to each component, and (2) we can estimate the impact of bias on the dispersion in analyst forecasts. In a pair of empirical exercises, we find a strong relation between the informational component of analyst forecasts and announcement period stock returns. We also find that analyst biases do not have an impact on forecast dispersion.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3604705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We modify Morris and Shin (2002) to develop a structural model of analyst earnings forecasts. The model allows for analysts to herd due to informational effects and non-informational incentives. The benefits of our model are twofold: (1) we can decompose earnings forecasts into informational and bias components, and measure the stock price response to each component, and (2) we can estimate the impact of bias on the dispersion in analyst forecasts. In a pair of empirical exercises, we find a strong relation between the informational component of analyst forecasts and announcement period stock returns. We also find that analyst biases do not have an impact on forecast dispersion.
分析师预测的结构模型:在预测信息量和分散性上的应用
我们修改了Morris和Shin(2002),以开发分析师收益预测的结构模型。该模型允许分析师由于信息效应和非信息激励而羊群。我们的模型有两个好处:(1)我们可以将收益预测分解为信息和偏差成分,并测量股票价格对每个成分的反应;(2)我们可以估计偏差对分析师预测离散度的影响。在一对实证练习中,我们发现分析师预测的信息成分与公告期股票回报之间存在很强的关系。我们还发现,分析师偏差对预测离散度没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信