Split-Bregman-based group-sparse reconstruction of multidimensional spectroscopic imaging data

Brian L. Burns, N. Wilson, M. Thomas
{"title":"Split-Bregman-based group-sparse reconstruction of multidimensional spectroscopic imaging data","authors":"Brian L. Burns, N. Wilson, M. Thomas","doi":"10.1109/ISBI.2014.6867955","DOIUrl":null,"url":null,"abstract":"4D Magnetic Resonance Spectroscopic Imaging data provides valuable biochemical information in vivo, however, its acquisition time is too long to be used clinically. In this paper, 4D phantom MRSI data are retrospectively under-sampled 4X, 6X, and 8X then reconstructed with Compressed Sensing and Group Sparsity. A derivation for the Group Sparse problem solution within the Split-Bregman framework is provided which allows for arbitrary, over-lapping groups of transform coefficients. Results show that Group Sparse reconstruction with over-lapping groups is more accurate at each under-sampling rate than Compressed Sensing reconstruction with superior peak line-shape and amplitude reproduction. The acceleration factors used in these experiments could potentially reduce scan times from 40 minutes to 5 minutes.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"47 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

4D Magnetic Resonance Spectroscopic Imaging data provides valuable biochemical information in vivo, however, its acquisition time is too long to be used clinically. In this paper, 4D phantom MRSI data are retrospectively under-sampled 4X, 6X, and 8X then reconstructed with Compressed Sensing and Group Sparsity. A derivation for the Group Sparse problem solution within the Split-Bregman framework is provided which allows for arbitrary, over-lapping groups of transform coefficients. Results show that Group Sparse reconstruction with over-lapping groups is more accurate at each under-sampling rate than Compressed Sensing reconstruction with superior peak line-shape and amplitude reproduction. The acceleration factors used in these experiments could potentially reduce scan times from 40 minutes to 5 minutes.
基于split - bregman的多维光谱成像数据群稀疏重建
4D磁共振波谱成像数据提供了有价值的体内生化信息,但其采集时间过长,无法用于临床。本文采用4X、6X和8X欠采样的4D幻像MRSI数据进行回顾性分析,然后利用压缩感知和群稀疏性进行重构。在Split-Bregman框架内,提供了组稀疏问题解决方案的推导,它允许任意的,重叠的变换系数组。结果表明,在每个欠采样率下,具有重叠组的群稀疏重建比具有更好的峰值线形和振幅再现能力的压缩感知重建更准确。这些实验中使用的加速因子可能会将扫描时间从40分钟减少到5分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信