{"title":"Three-Dimensional Computations of Transport and Growth for Crystal Growth Systems","authors":"J. Derby, A. Yeckel","doi":"10.1115/imece2000-1586","DOIUrl":null,"url":null,"abstract":"\n Modern finite element methods implemented on parallel supercomputers promise to allow the study of three-dimensional, time-dependent continuum phenomena in many engineering systems. This paper shows several examples of the fruitful application of these approaches to bulk crystal growth systems, where strongly nonlinear coupled phenomena are important.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Modern finite element methods implemented on parallel supercomputers promise to allow the study of three-dimensional, time-dependent continuum phenomena in many engineering systems. This paper shows several examples of the fruitful application of these approaches to bulk crystal growth systems, where strongly nonlinear coupled phenomena are important.