{"title":"An object tracking method using deep learning and adaptive particle filter for night fusion image","authors":"Xiaoyan Qian, Lei Han, Yanlin Zhang, M. Ding","doi":"10.1109/PIC.2017.8359530","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"48 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we propose an online visual tracking algorithm for fused sequences via deep learning and adaptive Particle filter (PF). Our algorithm pretrains a simplified Convolution Neural Network (CNN) to obtain a generic target representation. The outputs from the hidden layers of the network help to form the tracking model for an online PF. During tracking, the moving information guides the distribution of particle samples. The tests illustrate competitive performance compared to the state-of-art tracking algorithms especially when the target or camera moves quickly.