An efficient clustering technique and analysis of infrared thermograms

R. Vishnupriya, N. M. Raja, V. Rajinikanth
{"title":"An efficient clustering technique and analysis of infrared thermograms","authors":"R. Vishnupriya, N. M. Raja, V. Rajinikanth","doi":"10.1109/ICBSII.2017.8082275","DOIUrl":null,"url":null,"abstract":"This work proposes an efficient clustering technique for the localization of normal and abnormal tissues using the thermal data obtained from Digital Infrared Thermal Imaging. 10 normal and abnormal raw thermograms are preprocessed and by using K-means clustering, the heat patterns of the thermograms are clustered into various objects using the Euclidean distance metric. Further, breast thermograms are analysed, extracting the region of abnormality by utilizing the fuzzy nature of these thermograms. Features extracted from the simulations conducted on breast thermograms are compared and a distinctive variation is observed. These features can be used efficiently to identify normal and abnormal tissues.","PeriodicalId":122243,"journal":{"name":"2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBSII.2017.8082275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This work proposes an efficient clustering technique for the localization of normal and abnormal tissues using the thermal data obtained from Digital Infrared Thermal Imaging. 10 normal and abnormal raw thermograms are preprocessed and by using K-means clustering, the heat patterns of the thermograms are clustered into various objects using the Euclidean distance metric. Further, breast thermograms are analysed, extracting the region of abnormality by utilizing the fuzzy nature of these thermograms. Features extracted from the simulations conducted on breast thermograms are compared and a distinctive variation is observed. These features can be used efficiently to identify normal and abnormal tissues.
一种有效的红外热图聚类技术及分析
本文提出了一种有效的聚类技术,利用数字红外热成像获得的热数据来定位正常和异常组织。对10个正常和异常的原始热图进行预处理,并使用K-means聚类,热图的热模式使用欧几里得距离度量聚类到不同的目标。此外,乳房热图分析,提取异常区域,利用这些热图的模糊性。从乳房热图模拟中提取的特征进行了比较,并观察到明显的变化。这些特征可以有效地用于识别正常和异常组织。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信