Face Reconstruction from Deep Facial Embeddings using a Convolutional Neural Network

Hatef Otroshi-Shahreza, Vedrana Krivokuća Hahn, S. Marcel
{"title":"Face Reconstruction from Deep Facial Embeddings using a Convolutional Neural Network","authors":"Hatef Otroshi-Shahreza, Vedrana Krivokuća Hahn, S. Marcel","doi":"10.1109/ICIP46576.2022.9897535","DOIUrl":null,"url":null,"abstract":"State-of-the-art (SOTA) face recognition systems generally use deep convolutional neural networks (CNNs) to extract deep features, called embeddings, from face images. The face embeddings are stored in the system’s database and are used for recognition of the enrolled system users. Hence, these features convey important information about the user’s identity, and therefore any attack using the face embeddings jeopardizes the user’s security and privacy. In this paper, we propose a CNN-based structure to reconstruct face images from face embeddings and we train our network with a multi-term loss function. In our experiments, our network is trained to reconstruct face images from SOTA face recognition models (ArcFace and ElasticFace) and we evaluate our face reconstruction network on the MOBIO and LFW datasets. The source code of all the experiments presented in this paper is publicly available so our work can be fully reproduced.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

State-of-the-art (SOTA) face recognition systems generally use deep convolutional neural networks (CNNs) to extract deep features, called embeddings, from face images. The face embeddings are stored in the system’s database and are used for recognition of the enrolled system users. Hence, these features convey important information about the user’s identity, and therefore any attack using the face embeddings jeopardizes the user’s security and privacy. In this paper, we propose a CNN-based structure to reconstruct face images from face embeddings and we train our network with a multi-term loss function. In our experiments, our network is trained to reconstruct face images from SOTA face recognition models (ArcFace and ElasticFace) and we evaluate our face reconstruction network on the MOBIO and LFW datasets. The source code of all the experiments presented in this paper is publicly available so our work can be fully reproduced.
基于卷积神经网络的深度面部嵌入人脸重建
最先进的(SOTA)人脸识别系统通常使用深度卷积神经网络(cnn)从人脸图像中提取深度特征,称为嵌入。人脸嵌入存储在系统的数据库中,用于识别已注册的系统用户。因此,这些特征传达了关于用户身份的重要信息,因此任何使用人脸嵌入的攻击都会危及用户的安全和隐私。在本文中,我们提出了一种基于cnn的结构来从人脸嵌入中重建人脸图像,并使用多项损失函数来训练我们的网络。在我们的实验中,我们的网络被训练从SOTA人脸识别模型(ArcFace和ElasticFace)重建人脸图像,我们在MOBIO和LFW数据集上评估了我们的人脸重建网络。本文中所有实验的源代码都是公开的,因此我们的工作可以完全复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信